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INTRODUCTION
Cardiac inflammation is a crucial factor in the development and 
progression of atherosclerosis, as well as other cardiovascular 
complications. It is recognised as a significant contributor to residual 
cardiovascular risk in individuals with Atherosclerotic Cardiovascular 
Disease (ASCVD) [1]. Moreover, inflammation plays a role in cardiac 
and cerebral damage, as well as in the healing process following events 
like myocardial infarction or stroke [2]. Understanding and effectively 
targeting inflammation in cardiovascular pathologies is therefore 
essential for personalised prevention and treatment strategies.

However, current diagnostic methods for cardiac inflammation have 
their limitations [3]. While several tests such as cardiac troponin I 
and examination of intracellular cardiac proteins have been utilised, 
they do not provide a definitive diagnosis with absolute precision [4]. 
These tests lack specificity, as elevated levels of cardiac troponin I or 
intracellular proteins can be observed in conditions other than cardiac 
inflammation, leading to false-positive results [4]. Additionally, the timing 
of testing can be critical, as these markers may not be immediately 
elevated after the onset of inflammation, potentially resulting in false-
negative results [4]. These methods may be further complicated by 
the declining proficiency in cardiac auscultation skills, which were 
once relied upon for diagnosing cardiac conditions [5]. Therefore, it is 
important to continue developing and improving diagnostic methods 
to ensure accurate and precise detection of cardiac inflammation.

The utilisation of 18-Fluoro-Deoxyglucose Positron Emission 
Tomography (FDG-PET) imaging holds significant promise in 
enhancing the diagnosis of cardiac inflammation [6]. By visualising 
increased glucose metabolic rates in infarcted segments using PET 
imaging with FDG, inflammation can be detected non invasively [7]. 
This imaging technique offers a more comprehensive evaluation of 
the inflammatory response, providing valuable insights into the extent 
of inflammation. FDG-PET can also aid in the diagnosis of conditions 
such as Cardiac Sarcoidosis (CS) and Infective Endocarditis (IE) by 
identifying active inflammation [8].

The FDG-PET presents several advantages in diagnosing cardiac 
inflammation; however, it also comes with challenges. The current 
standard radiotracer, FDG, cannot differentiate between glucose 
uptake in normal cardiomyocytes and inflammatory cells [7]. However, 

radiomics offers a potential solution to this issue. Radiomics involves 
extracting quantitative features from FDG-PET images and analysing 
them using machine learning algorithms [9]. By studying large sets 
of data, radiomics enables the identification of meaningful patterns 
and relationships, which can aid in differentiating between normal 
and inflamed cardiac tissue [10]. This approach can enhance the 
diagnostic accuracy of FDG-PET imaging in cardiac inflammation.

Radiomics is a new field in medical imaging that involves the 
extraction of quantitative features from medical images. It aims 
to find clinically relevant image-derived biomarkers for lesion 
characterisation, prognostic stratification, and response prediction. 
In the context of FDG-PET imaging, radiomics focuses on quantifying 
radiotracer uptake heterogeneity and other tissue characteristics 
[11]. FDG-PET imaging with radiomics has the potential to provide 
valuable information about tissue biology that is not visible to the 
naked eye [12]. It can contribute to precision medicine by aiding 
in the detection and staging of cancer or active inflammations, as 
well as in the diagnosis, treatment, and molecular typing of breast 
cancer [13]. Radiomic models built using FDG-PET imaging can 
help to improve the diagnostic accuracy, risk stratification, and 
follow-up of patients with various cardiovascular diseases, such 
as coronary heart disease, ischaemic heart disease, hypertrophic 
cardiomyopathy, and hypertensive heart disease [14].

Radiomic features can be extracted from FDG-PET images using 
the following steps. First, the images are segmented to identify the 
Regions of Interest (ROIs) using techniques such as Convolutional 
Neural Networks (CNN) [15]. Once the ROIs are identified, radiomic 
features are extracted from the segmented data. These features 
can include Standardised Uptake Value (SUV) metrics and other 
quantitative measurements [16]. Various methods can be used to 
extract these features, including handcrafted features and deep-
learning approaches [17]. The extracted features are then harmonised 
to ensure consistency and comparability across different datasets 
[18]. Finally, machine learning classifiers can be used to analyse 
the radiomic features and predict specific outcomes, such as 
prognosis or treatment response [19]. Overall, the process involves 
segmentation, feature extraction, harmonisation, and analysis using 
machine learning techniques [Table/Fig-1].
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ABSTRACT
Cardiovascular inflammation plays a key role in atherosclerosis and other cardiovascular complications, highlighting the importance 
of accurate detection methods. While traditional diagnostic tests have limitations in specificity and timing, 18-Fluoro-Deoxyglucose-
Positron Emission Tomography (FDG-PET) imaging offers a non invasive approach to visualise inflammation. Radiomics, the 
extraction of quantitative features from medical images for analysis with machine learning algorithms, presents an opportunity to 
enhance the diagnostic accuracy of FDG-PET imaging in detecting cardiac inflammation. Studies investigating radiomics in various 
cardiovascular inflammatory conditions, including Cardiac Sarcoidosis (CS), Infective Endocarditis (IE), and active aortitis, have 
shown promising results in improving diagnostic performance. The review discusses the challenges and potentials of radiomics 
in cardiovascular imaging, emphasising the need for standardisation and validation in advancing personalised diagnosis and 
treatment strategies for cardiovascular inflammation.
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key findings of few recent studies are presented in [Table/Fig-2] 
[20-24].

Cardiac Sarcoidosis (CS): CS is a rare condition characterised by 
the infiltration of the heart’s myocardium by granulomas [25]. This 
inflammatory disorder is part of the broader condition known as 
sarcoidosis, which can affect multiple organs in the body [25]. CS 
specifically involves inflammation in all layers of the heart, particularly 
the myocardium [25].

Clinical manifestations of CS can vary from asymptomatic 
conduction abnormalities to severe heart failure and even sudden 
cardiac death [26]. Diagnosing CS can be difficult, as there is a 
lack of definitive diagnostic criteria and the clinical symptoms can 
be ambiguous [27]. However, PET can help identify and assess the 
extent of myocardial inflammation [28].

In Mushari NA et al., (2022) study, the researchers aimed to 
investigate the potential of radiomic feature extraction from PET 
images for enhancing the diagnostic accuracy of CS using FDG-
PET [22]. The study involved 40 sarcoidosis patients and 29 
controls who underwent FDG-PET imaging to identify active CS. 
For analysis, two different segmentations, namely Segmentation 
A and Segmentation B, were employed. In Segmentation A, the 
myocardium’s ROIs were manually delineated based on regions 
with SUV exceeding 2.5, indicating heightened metabolic activity. 
This method aimed to isolate and analyse areas of active disease 
by distinguishing them from normal myocardial tissue. By focusing 
on areas with elevated tracer uptake, particularly those with SUV 
exceeding 2.5, the aim was to evaluate the presence and extent 
of CS. Elevated SUV values in PET imaging typically signify regions 
with increased metabolic activity, often associated with inflammatory 
processes or active disease states such as CS. On the other hand, 
in Segmentation B, an ROI was drawn on the entire left ventricular 
myocardium for both study groups [22].

Conventional metrics and radiomic features were extracted from 
the PET images for each ROI. Subsequently, a Mann-Whitney 

Study objectives Study Characteristics analysis Conclusion

Duff L et 
al., [20], 
2022

Develop radiomic 
imaging biomarkers for 
assisted diagnosis of 
active aortitis using FDG-
PET images

Radiomic features and SUV metrics were 
extracted from images of 50 patients with 
aortitis and 25 controls

The study utilised Sci-kit Learn for 
machine learning algorithms and 
PCA to determine the number of 
components needed to explain 
90% of the variance in radiomics 
signatures

The study proposed a radiomic method for 
aiding the diagnosis of aortitis with promising 
results, suggesting further validation for 
automated and standardised diagnosis

Erba P et 
al., [21], 
2022 

Assess the value of 
FDG-PET radiomics in 
diagnosing IE, building 
predictive models, 
classifying patients, and 
predicting final diagnosis 
using radiomics data

- Evaluated FDG-PET scans in 447 
patients suspected of IE
- Conducted at 3 different centres
- Data collected from January 2015 to 
2020

- FDG-PET and LIFEx software were 
used in 447 patients suspected of IE
- Texture features and radiomics 
aided in predicting diagnosis and 
stratifying disease severity
- Multivariate testing with MANOVA 
and LR improved diagnostic 
performance

FDG-PET radiomics has a positive impact 
on classifying IE but more work is needed 
to refine diagnostic criteria and identify key 
radiomic signatures

Mushari 
NA et 
al., [22], 
2022 

Evaluate the utility of 
radiomic features from 
PET images for detecting 
CS through comparison 
with conventional metrics 
and machine learning 
techniques

- 40 sarcoid patients, 29 controls had 
FDG PET-CMR scans

- Two segmentations used for 
analysis, conventional metrics and 
radiomic features extracted from 
each
- PCA with five components, testing 
and training 10 ML classifiers

- PET radiomic analysis may not detect CS 
effectively
- Some radiomic features unrelated to tracer 
uptake had high AUC and accuracy
- TBR max outperformed other features.
- More validation needed in normal control 
subjects with non specific uptake

Duff LM 
et al., 
[23], 2023

Develop and validate 
an automated radiomic 
pipeline for diagnosing 
active aortitis

- Training cohort: 43 aortitis patients, 21 
control patients
- Test cohort: 12 aortitis patients, 5 
control patients
- Validation cohort: 24 aortitis patients, 14 
control patients

An automated radiomic pipeline, 
using PyRadiomics for feature 
extraction and Sci-kit Learn for 
ML classifiers, was developed and 
validated for diagnosing active aortitis

The findings suggest that the radiomic pipeline 
can be generalisable and transferable
- The pipeline could be used to build an 
automated clinical decision tool

Godefroy 
T et al., 
[24], 2023

Evaluate the performance 
of a radiomics and 
machine learning-based 
analysis of FDG-PET in 
diagnosing PVE

- Retrospective, single-centre design used
- Expert consensus as diagnostic gold 
standard
- Training and hyperparameter tuning with 
cross-validation
- Evaluation on independent test database

- Manual segmentation of each 
PV and extraction of 31 radiomics 
features
- Training of a ridge logistic regressor 
to predict PVE

- ML analysis of FDG-PET in PVE diagnosis is 
feasible and beneficial
- ML improves the performance of ESC 2015 
criteria for PVE diagnosis
- Further developments are needed to 
optimise the role of FDG-PET in PVE diagnosis

[Table/Fig-2]: Summary of FDG-PET radiomics studies on cardiac inflammation [20-24].
AUC: Area under the curve; CMR: Cardiac magnetic resonance; CS: Cardicac sarcoidosis; IE: Infective endocarditis; ESC: European Society of Cardiology; FDG-PET: 18-Fluoro-deoxyglucose-positron 
emission tomography; LR: Logistic regression; MANOVA: Multivariate analysis of variance; ML: Machine learning; PCA: Principal component analysis; PVE: Prosthetic valve endocarditis; SUV: Standrised 
uptake value; TBR: Tissue-to-background ratio

[Table/Fig-1]: Radiomics framework.

Radiomics in Cardiovascular Inflammation
There have been limited studies conducted to investigate the 
potential value of radiomics in enhancing the diagnosis of 
various cardiovascular inflammatory conditions. Summary of the 
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U-test and logistic regression classifier were utilised to compare 
the extracted features between the study groups. Additionally, 
Principal Component Analysis (PCA) was employed to identify five 
components with cumulative variance greater than 90% [22].

The researchers tested and trained ten different machine learning 
classifiers, calculating the Area Under the Curve (AUC) and accuracy 
values for each classifier. The PyRadiomics software was used to 
extract a total of 75 features from the PET image ROIs, adhering 
to the Image Biomarker Standardisation Initiative (IBSI) feature 
definitions [22]. The findings indicated that the maximum Target-
to-Background Ratio (TBRmax) exhibited superior performance 
compared to other conventional and radiomic features in both 
segmentation approaches, demonstrating high AUC and accuracy 
values [22].

For segmentation A, all classifiers displayed strong performance with 
AUC and accuracy values ranging from 0.88 to 1.00 (95% CI) and 
0.87 to 1.00 (95% CI), respectively. The k-nearest neighbours and 
neural network classifiers performed exceptionally well, exhibiting 
AUC and accuracy values of 1.00 [22].

In segmentation B, four classifiers achieved AUCs and accuracies 
equal to or greater than 0.8. Among these classifiers, the Gaussian 
process classifier exhibited the highest AUC and accuracy values, 
namely 0.9 and 0.8, respectively [22].

Overall, these results provide compelling evidence for the 
effectiveness of TBRmax as a metric for distinguishing between CS 
patients and controls, showcasing high diagnostic accuracy and 
performance across different segmentation approaches.

Endocarditis: Infectious Endocarditis (IE) is a heart infection that 
affects the heart valves and endocardium [29]. It can manifest as 
acute, subacute, or chronic and is characterised by vague symptoms 
like fever, malaise, anaemia, and embolic complications [29]. Due to 
the similarity of symptoms with other diseases, delayed diagnosis is 
common. IE can lead to serious complications such as heart failure, 
stroke, nonstroke embolisation, and intracardiac abscess [30]. The 
diagnosis of IE is primarily based on patient risk assessment, with 
the modified Duke criteria being the most widely accepted tool [31]. 
Laboratory tests often yield non specific results, making IE primarily 
a clinical diagnosis. Procalcitonin can be used as a diagnostic aid, 
but it lacks specificity for IE [30]. Prosthetic Valve Endocarditis (PVE) 
is a specific form of IE that occurs in individuals with artificial heart 
valves. It can be caused by various bacteria, including Neisseria 
elongata, and can have significant consequences for patients [32].

Two studies explored the potential of radiomics and machine 
learning-based analysis of FDG PET/CT scans in the diagnosis 
of cardiac inflammation diseases, specifically IE and PVE [21,24]. 
These studies, collectively suggest that integrating radiomics and 
machine learning-based analyses with FDG PET/CT scans holds 
promise for enhancing the diagnosis and management of cardiac 
inflammation diseases, particularly IE and PVE.

The first study by Erba P et al., assessed the value of radiomics 
in diagnosing IE. They found that radiomics provided a positive 
contribution in predicting PET/CT results and IE diagnosis. 
Specifically, radiomics supported visual imaging assessment in 
85% of cases with ambiguous findings. However, its contribution in 
classifying IE was limited, achieving an accuracy of only 64% [21].

In the second study, conducted by Godefroy T et al., the focus 
was on PVE diagnosis. They utilised a combination of radiomics 
and machine learning analysis on FDG PET/CT scans. The findings 
revealed promising results, demonstrating the feasibility and 
benefits of this approach. Machine learning analysis improved the 
specificity of PVE diagnosis from 74% to 90%, and it helped reduce 
interobserver variability significantly, with an agreement increase 
from 42% to 85% [24].

active aortitis: Active aortitis, characterised by inflammation of 
the aorta in the absence of systemic vasculitis or infection, poses 

diagnostic challenges, particularly due to its often late detection 
and non specific routine markers like Erythrocyte Sedimentation 
Rate (ESR) and C-Reactive Protein (CRP) [33]. Two recent studies 
investigated the utility of radiomic analysis derived from PET/CT 
imaging in diagnosing active aortitis [20,23].

In the study by Duff L et al., a methodological framework was 
developed for assisted diagnosis of active aortitis using radiomic 
imaging biomarkers from FDG PET-CT images [20]. The study 
revealed that selected radiomic features and SUV metrics 
demonstrated high accuracy and performance in identifying active 
aortitis, comparable to qualitative assessment. Notably, individual 
radiomic features achieved high accuracy and AUC scores (84% 
to 86%; 0.83 to 0.97) while radiomic signatures also showed 
promising AUC scores (0.80 to 1.00). The Grey Level Size Zone 
Matrix (GLSZM) non-uniformity normalised feature measures 
heterogeneity in the size of zones within an image. It quantifies the 
differences in zone sizes, indicating the level of irregularity in their 
distribution. This feature effectively differentiated active aortitis from 
controls. The study suggested the potential of a machine learning-
based approach using radiomic signatures to develop a clinical 
decision-making tool for aortitis assessment [20].

In a subsequent study by Duff LM et al., an automated pipeline 
for diagnosing active aortitis through radiomic analysis was 
developed [23]. This pipeline incorporated a CNN for automated 
aorta segmentation and extraction of radiomic features for 
diagnostic evaluation. Three distinct radiomic fingerprints were 
constructed, demonstrating high diagnostic performance across 
multiple datasets and indicating generalisability. The results 
highlighted the potential of the automated pipeline, including CNN 
segmentation, radiomic analysis, and ML classifiers, in creating 
an automated clinical decision tool for standardised assessment 
of active aortitis.

In conclusion, these studies underscored the potential of radiomic 
analysis in aiding the diagnosis of active aortitis. The findings suggest 
that radiomic features and automated pipelines have the capacity to 
deliver precise and reliable diagnostic information, potentially paving 
the way for enhanced diagnostic tools for this complex condition.

DISCUSSION
Radiomics has shown its potential in PET/CT imaging by quantifying 
radiotracer uptake heterogeneity and other tissue characteristics 
[34]. The studies reviewed herein demonstrate the ability of radiomic 
features and SUV metrics to provide quantitative analysis that can 
potentially overcome the subjectivity and variability inherent in 
traditional imaging interpretation.

However, the findings also point to challenges in translating radiomic 
and machine learning approaches into clinical practice. For example, 
while radiomics provided a positive contribution in predicting PET/
CT results in IE, its accuracy was limited [21]. Such findings suggest 
that while radiomic features hold promise, they may not be sufficient 
alone and should be integrated with clinical and other diagnostic 
data for optimal results.

In PVE diagnosis, the integration of machine learning analysis 
improved specificity and reduced interobserver variability 
significantly [24]. This aspect is particularly important considering 
that interobserver variability can lead to inconsistent diagnosis and 
treatment plans. By improving diagnostic specificity and agreement 
among clinicians, patient care can be substantially improved.

The advancements in diagnosing active aortitis using radiomic 
imaging biomarkers and machine learning-based approaches 
indicate a shift toward more objective and reproducible diagnostic 
tools [20,23]. Such tools could lead to earlier detection and better 
monitoring of disease progression, which is crucial for conditions 
like active aortitis, where late detection can have significant 
consequences for patient outcomes.
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Despite these promising developments, it is important to 
acknowledge the limitations and challenges that must be addressed 
before widespread adoption in clinical practice can occur. These 
include the need for standardisation of radiomic feature extraction, 
robust validation of machine learning models on large and diverse 
patient populations, and integration with clinical pathways. 
Additionally, the computational complexity and need for specialised 
expertise to implement these techniques may limit their accessibility 
in some healthcare settings.

Future research should focus on multicentre trials to validate these 
findings and assess the generalisability of radiomic and machine 
learning models across different populations and imaging equipment. 
Such studies could also explore the integration of radiomics with 
other biomarkers and clinical data to develop comprehensive 
diagnostic models. Furthermore, there is a need to develop user-
friendly software and protocols to facilitate the translation of these 
advanced techniques into routine clinical practice.

CONCLUSION(S)
The reviewed literature underscores the significant potential of 
radiomics and machine learning in improving the diagnosis of 
cardiovascular inflammatory conditions. These techniques offer a 
compelling adjunct to traditional imaging and clinical diagnostics, 
with the potential to enhance patient care through more accurate 
and timely diagnosis. However, further research and development 
are needed to overcome current limitations and fully harness the 
benefits of these advanced technologies in clinical settings.
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